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Abstract
We characterize the multipartite entanglement of a system of n qubits in terms
of the distribution function of the bipartite purity over balanced bipartitions.
We search for maximally multipartite entangled states, whose average purity is
minimal, and recast this optimization problem into a problem of statistical
mechanics, by introducing a cost function, a fictitious temperature and a
partition function. By investigating the high-temperature expansion, we obtain
the first three moments of the distribution. We find that the problem exhibits
frustration.

PACS numbers: 03.67.Mn, 03.65.Ud, 89.75.-k, 03.67.-a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is a profound diversity between quantum mechanical and classical correlations.
Schrödinger [1, 2] coined the term ‘entanglement’ to describe the peculiar connection that can
exist between quantum systems, that was first perceived by Einstein, Podolsky and Rosen [3]
and has no analog in classical physics. Entanglement is a resource in quantum information
science [4–6] and is at the origin of many unique quantum phenomena and applications, such
as superdense coding [7], teleportation [8] and quantum cryptographic schemes [9–12].

Much progress has been made in developing a quantitative theory of entanglement
[5, 6]. The bipartite entanglement between simple systems can be unambiguously defined in
terms of the von Neumann entropy or the entanglement of formation [4, 13, 14]. On the other
hand, an exhaustive characterization of multipartite entanglement is more elusive [5, 6] and
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different definitions [15–19] often do not agree with each other, essentially because they tend
to capture different aspects of the phenomenon. More to this, a complete evaluation of global
entanglement measures bears serious computational difficulties, because states endowed with
large entanglement typically involve exponentially many coefficients.

We proposed in [20] that multipartite entanglement shares many characteristic traits of
complex systems and can therefore be analyzed in terms of the probability density function
of an entanglement measure (say purity) of a subsystem over all (balanced) bipartitions of
the total system [21]. A state has a large multipartite entanglement if its average bipartite
entanglement is large. In addition, if the entanglement distribution has a small standard
deviation, bipartite entanglement is essentially independent of the bipartition and can be
considered as being fairly ‘shared’ among the elementary constituents (qubits) of the system.
Clearly, average and standard deviation are but the first two moments of a distribution function.
A full characterization of the multipartite entanglement of a quantum state must therefore take
into account higher moments and/or the whole distribution function, in particular if the latter
is not bell shaped or is endowed with unusual and/or irregular features.

The idea that complicated phenomena cannot be summarized in a single (or a few)
number(s), but rather require a large number of measures (or even a whole function), is not
novel in the context of complex systems [22] and even in the study of quantum entanglement
[23]. In this paper we shall pursue this idea even further and shall study the bipartite and
multipartite entanglement of a system of qubits by making full use of the tools and techniques of
classical statistical mechanics: we shall explore the features of a partition function, expressed
in terms of the average purity of a subset of the qubits; this will be viewed as a cost function,
that plays the role of the Hamiltonian. Interestingly, this approach brings to light the presence
of frustration in the system [24], highlighting the complexity inherent in the phenomenon of
multipartite entanglement.

This paper is organized as follows. We introduce notation and define maximally bipartite
and maximally multipartite entangled states in section 2. Multipartite entanglement is
characterized in terms of the distribution function of bipartite entanglement in section 3.
The statistical mechanical approach and the partition function are introduced in section 4. The
high temperature expansion and its first three cumulants are computed in section 5. Section 6
contains our conclusions and an outlook.

2. From bipartite to multipartite entanglement

2.1. Bipartite purity

We consider an ensemble S = {1, 2, . . . , n} of n qubits in the Hilbert space HS = (C2)⊗n and
focus on pure states

|ψ〉 =
∑
k∈Z

n
2

zk|k〉, zk ∈ C,
∑
k∈Z

n
2

|zk|2 = 1, (1)

where k = (ki)i∈S , with ki ∈ Z2 = {0, 1}, and

|k〉 =
⊗
i∈S

|ki〉i , |ki〉i ∈ C
2, 〈ki |kj 〉 = δij . (2)

For the sake of simplicity, in this paper we will focus on pure states of qubits and will not
discuss additional phenomena such as bound entanglement [25, 26]. Consider a bipartition
(A, Ā) of the system, where A ⊂ S is a subset of nA qubits and Ā = S\A its complement, with
nA +nĀ = n. We set nA � nĀ with no loss of generality. The total Hilbert space factorizes into
HS = HA ⊗ HĀ, with HA = ⊗

i∈A C
2
i , of dimensions NA = 2nA and NĀ = 2nĀ , respectively

2
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(NANĀ = N ). As a measure of the bipartite entanglement between the two subsets, we
consider the purity of subsystem A:

πA = trA ρ2
A, ρA = trĀ |ψ〉〈ψ |, (3)

with trX being the partial trace over X = A or Ā. We note that πA = πĀ and

1/NA � πA � 1. (4)

State (1) can be written according to the bipartition (A, Ā) as

|ψ〉 =
∑
k∈Z

n
2

zk|kA〉A ⊗ |kĀ〉Ā, (5)

where kA = (ki)i∈A and |l〉A = ⊗
i∈A |li〉i ∈ HA. By plugging equation (5) into equation (3),

we obtain

ρA =
∑

k,l∈Z
n
2

zkz̄lδkĀ,lĀ |kA〉〈lA| (6)

and

πA =
∑

k,k′,l,l′∈Z
n
2

zkzk′ z̄l z̄l′δkA,l′Aδk′
A,lAδkĀ,lĀ δk′

Ā
,l′

Ā
, (7)

which is a quartic function of the coefficients of expansion (1). If, for example, the system is
partitioned into two blocks of contiguous qubits (C, C̄), namely C = {1, 2, . . . , nA}, then

πC =
∑

l,l′∈Z
nA
2

∑
m,m′∈Z

nĀ
2

z(l,m)z̄(l′,m)z(l′,m′)z̄(l,m′), (8)

where (l,m) = (
l1, . . . , lnA

,m1, . . . , mnĀ

) ∈ Z
n
2.

2.2. Minimal bipartite purity

For a given bipartition it is very easy to saturate the lower bound 1/NA of (7). For example,

zk = N
−1/2
A δkA,kĀ

, (9)

which represents a maximally bipartite entangled state

|ψ〉 = N
−1/2
A

∑
l∈Z

nA
2

|l〉A ⊗ |l〉Ā, (10)

yields ρA = 1/NA and πA = 1/NA. In fact, the general minimizer is a maximally bipartite
entangled state whose Schmidt basis is not the computational basis, namely,

zk = N
−1/2
A

∑
l∈Z

nA
2

UA
kA,lU

Ā
kĀ,l , (11)

where UA
l,l′ = 〈lA|UA|l′A〉 with UA a local unitary operator in HA that transforms the

computational bases into the Schmidt one, that is

|ψ〉 = N
−1/2
A

∑
l∈Z

nA
2

UA|l〉A ⊗ UĀ|l〉Ā. (12)

For this state, πA(|ψ〉) = 1/NA. The information contained in a maximally bipartite entangled
state with nA = nĀ is not locally accessible by party A or Ā, because their partial density
matrices are maximally mixed, but rather is totally shared by them.

3
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2.3. Average purity and MMES

Entanglement, in very few words, embodies the impossibility of factorizing a state of the
total quantum system in terms of the states of its constituents. Most measures of bipartite
entanglement (for pure states) exploit the fact that when a (pure) quantum state is entangled,
its constituents do not have (pure) states of their own. This is, for instance, what we did in the
previous section. We wish to generalize the above distinctive trait to the case of multipartite
entanglement, by requiring that this feature be valid for all bipartitions.

Let |ψ〉 ∈ HS and consider the average purity [27, 29]

π
(n)
ME(|ψ〉) = E[πA] =

(
n

nA

)−1 ∑
|A|=nA

πA, (13)

where E denotes the expectation value, |A| is the cardinality of A and the sum is over balanced
bipartitions nA = [n/2], where [x] denotes the integer part of x. Since we are focusing on
balanced bipartitions, and any bipartition can be brought into any other bipartition by applying
a permutation of the qubits, the sum over balanced bipartitions in (13) is equivalent to a
sum over the permutations of the qubits. The quantity πME measures the average bipartite
entanglement over all possible balanced bipartitions and inherits the bounds (4)

1/NA � π
(n)
ME(|ψ〉) � 1. (14)

The average purity introduced in equation (13) is related to the average linear entropy
SL = NA

NA−1 (1 − πME) [27] and extends ideas put forward in [18, 28].
A maximally multipartite entangled state (MMES) [29] |ϕ〉 is a minimizer of πME,

π
(n)
ME(|ϕ〉) = E

(n)
0 ,

with E
(n)
0 = min{π(n)

ME(|ψ〉) | |ψ〉 ∈ HS, 〈ψ |ψ〉 = 1}. (15)

The meaning of this definition is clear: the density matrix of each subsystem A ⊂ S of a
MESS is as mixed as possible (given the constraint that the total system is in a pure state), so
that the information contained in a MMES is as distributed as possible.

2.4. Perfect MMES and the symptoms of frustration

For small values of n one can tackle the minimization problem (15) both analytically and
numerically. For n = 2, 3, 5, 6 the average purity saturates its minimum in (14): this means
that purity is minimal for all balanced bipartitions. In this case, we shall say that the MMES
is perfect.

For n = 2 (perfect) MMES are Bell states up to local unitary transformations, while
for n = 3 they are equivalent to the GHZ states [30]. For n = 4 one numerically obtains
E

(4)
0 = min π

(4)
ME = 1/3 > 1/4 = 1/NA [29, 31–33]. For n = 5 and 6 one can find several

examples of perfect MESS, some of which can be expressed in terms of binary strings of
coefficients (zk = ±1 in equation (1)).

The case n = 7 is still open, our best estimate being E
(7)
0 � 0.133 87 > 1/8 = 1/NA.

Most interestingly, perfect MMES do not exist for n � 8 [27]. These findings are summarized
in table 1. This brings to light an intriguing feature of multipartite entanglement: we observed
in section 2.2 that it is always possible to saturate the lower bound in (4)

π
(n)
A = 1/NA (16)

for a given bipartition (A, Ā). However, in order to saturate the lower bound

E
(n)
0 = 1/NA (17)

4
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Table 1. Perfect MMES for different number n of qubits.

n Perfect MMES

2,3 Exist
4 Do not exist
5,6 Exist
7 ?
�8 Do not exist

in equation (14), it must happen that (16) be valid for any bipartition in average (13). As
we have seen, this requirement can be satisfied only for very few ‘special’ values of n. For
all other values of n this is impossible: different bipartitions ‘compete’ with each other, and
the minimum E

(n)
0 of π

(n)
ME is strictly larger than 1/NA. We view this ‘competition’ among

different bipartitions as a phenomenon of frustration: it is already present for n as small as 4
[24]. (Interestingly, an analogous phenomenon exists also for ‘Gaussian MMES’, see [34].)

This frustration is the main reason for the difficulties one encounters in minimizing πME

in (13). Note that the dimension of HS is N = 2n and the number of partitions scales like 2N .
We therefore need to define a viable strategy for the characterization of MMES, when n � 8.

3. Probability distribution of bipartite entanglement

We now introduce the distribution function of purity over all bipartitions, p(πA), that will
induce a probability–density–function characterization of multipartite entanglement. For
rather regular (i.e. bell-shaped) distributions the first few moments already yield a good
characterization: in particular, the average will measure the amount of entanglement of the
state when the bipartitions are varied, while the variance will quantify how uniformly is
bipartite entanglement distributed among balanced bipartitions.

The calculation of the properties of πA is particularly simple for an important class of
states. Consider the set

C =
{

(z1, z2, . . . , zN) ∈ C
N |

∑
k

|zk|2 = 1

}
, (18)

corresponding to normalized vectors in HS . This set is left invariant under the natural action
of the unitary group U(HS). A typical state is obtained by sampling with respect to the action
of U(HS) on this set. Typical states have been extensively studied in the literature [35–40]
and can be (efficiently) generated by a chaotic dynamics [41, 42].

For large N, the πA’s have a bell-shaped distribution over the bipartitions with mean and
variance [21]

μ(n) = 〈πA〉0 = NA + NĀ

N + 1
, (19)

σ 2 = 〈(πA − μ)2〉0 = 2(N2
A − 1)(N2

Ā
− 1)

(N + 1)2(N + 2)(N + 3)
, (20)

respectively, where the brackets 〈· · ·〉0 denote the average with respect to the unitarily invariant
measure over pure states

dμC(z) = (N − 1)!

πN
δ

(
1 −

∑
k

|zk|2
) ∏

k

dzk dz̄k, (21)

5
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induced by the Haar measure over U(HS) through the mapping |ψ〉 = ∑
zj |j 〉 = U |ψ0〉, for

a given reference state |ψ0〉 [38]. Here, dzk dz̄k = dxk dyk , with xk = Re zk and yk = Im zk ,
denotes the Lesbegue measure on C.

Given a state |ψ〉 ∈ HS , the potential of multipartite entanglement has the following
expression in terms of its Fourier coefficients zi :

πME =
∑

k,k′,l,l′∈Z
n
2

�(k, k′; l, l′) zk zk′ z̄l z̄l′ , (22)

with a coupling function

�(k, k′; l, l′) =
(

n

nA

)−1 ∑
|A|=nA

1

2

(
δkA,l′Aδk′

A,lAδkĀ,lĀ δk′
Ā
,l′

Ā
+ δk′

A,l′AδkA,lAδk′
Ā
,lĀ δkĀ,l′

Ā

)
, (23)

with nA = [n/2] (balanced bipartitions). The result follows by plugging expression (7) of
πA into equation (13), and by symmetrizing under the exchange k ↔ k′ (or, equivalently,
A ↔ Ā). The coupling function � has the following expression (see appendix A for details):

�(k, k′; l, l′) = g((k ⊕ l) ∨ (k′ ⊕ l′), (k ⊕ l′) ∨ (k′ ⊕ l)), (24)

where

g(a, b) = δa∧b, 0 ĝ(|a|, |b|), (25)

with |a| = ∑
i∈S ai , |b| = ∑

i∈S bi , a ⊕ b = (ai + bi mod 2)i∈S the XOR operation,
a ∨ b = (ai + bi − aibi)i∈S the OR operation, a ∧ b = (aibi)i∈S the AND operation and

ĝ(s, t) = 1

2

(
n

nA

)−1 [(
n − s − t

nA − s

)
+

(
n − s − t

nA − t

)]
. (26)

Using the definitions we notice the following symmetries of the coupling function:⎧⎨
⎩

�(k, k′; l, l′) = �(k′, k; l, l′)
�(k, k′; l, l′) = �(l, l′; k, k′)
�(k, k′; l, l′) = �(k′, k; l′, l)

. (27)

4. Partition function

In order to study the minimization problem, we will reformulate it in terms of classical
statistical mechanics: in particular, the minimum E0 of πME will be recovered in the zero
temperature limit of a suitable classical system.

The main quantity we are interested in is the average bipartite entanglement between
balanced bipartitions, πME in equation (13). This quantity will play the role of energy in the
statistical mechanical approach. We therefore start by viewing πME in equation (13) as a cost
function (potential of multipartite entanglement) and write

H(z) = πME(|ψ〉), (28)

where z are the Fourier coefficients of expansion (1). We consider an ensemble {mj }
of M vectors (states), where mj is the number of vectors with purity H = εj . In the
standard ensemble approach to statistical mechanics, one seeks the distribution that maximizes
the number of states 
 = M!/

∏
j mj ! under the constraints that

∑
j mj = M and∑

j mjεj = ME. For M → ∞, the above optimization problem yields the canonical
ensemble and its partition function

Z(β) =
∫

dμC(z) e−βH(z) = cN

∫
dμH(U) exp(−βE[trA(trĀ U |ψ0〉〈ψ0|U †)2]), (29)

6
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where the expectation value E was introduced in equation (13) and the Lagrange multiplier
β, which plays the role of an inverse temperature, fixes the average value of purity E. In
the first integral we have used the measure (21) and taken into account the normalization
condition (18). In the last (base-independent) expression μH denotes the Haar measure over
U(H), |ψ0〉 is any given vector and the (unimportant) constant cN is proportional to the ratio
μC(CN)/μH(U(H)) between the area of the (N − 1)-dimensional sphere (18) and the volume
of the unitary group. In conclusion, the potential of multipartite entanglement can now be
considered as the Hamiltonian of a classical statistical mechanical system.

4.1. Comments

In order to clarify the rationale behind our analysis, a few comments are necessary.

(1) Although our interest is focused on the microcanonical features of the system, namely on
‘isoentangled’ manifolds [43], we find it convenient to define a canonical ensemble and
a temperature. This makes the analysis easier to handle and is at the very foundations
of statistical mechanics, when one discusses the equivalence in the description of large
systems between the microcanonical ensemble (in which energy is fixed) and the canonical
ensemble (in which temperature is fixed).

(2) One can view the multipartite system as an ensemble for the collection of all balanced
bipartitions. However, what makes the problem intricate and interesting is the fact that
there is a nontrivial interaction among different bipartitions, which in general provokes
frustration.

(3) From a physical point of view, the measure of typical states is a uniform measure over
the whole projective space. This would be consistent with ergodicity. However, our
analysis is purely static and we do not consider the time evolution generated by the
(purity) Hamiltonian. The relaxation to equilibrium, as well as its ergodic properties,
deserves a deeper study and would probably uncover additional features with respect to
the equilibrium situation. This aspect will be investigated in the future.

(4) Temperature is a Lagrange multiplier for the optimization parameter. It is the variable that
is naturally conjugate to H, in exactly the same way as inverse temperature is conjugate
to energy: β fixes, with an uncertainty that becomes smaller for a larger system, the
level of the purity of the subset of vectors under consideration, and thus an isoentangled
submanifold. The use of a temperature is a common expedient in problems that can be
recast in terms of classical statistical mechanics. One can find examples of this kind
in the stochastic approach to optimization processes (for instance simulated annealing)
[44, 45].

4.2. Some limits

We start by looking at some interesting limits and give a few preliminary remarks. For β → 0,
equation (29) clearly yields the distribution of the typical states (21). For β → +∞ (T → 0+),
only those configurations that minimize the Hamiltonian survive, namely the MMES. There is a
physically appealing interpretation even for negative temperatures: for β → −∞ (T → 0−),
those configurations are selected that maximize the Hamiltonian, that is separable (factorized
and non-entangled) states.

The energy distribution function at arbitrary β can be obtained from the partition function

Z(β) =
∫

dμC(z) e−βH(z) =
∫ 1

E0

dE e−βE

∫
dμC(z)δ(H(z) − E), (30)

7
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Figure 1. Probability density function P0(E) for n = 4. The distribution has been obtained from
5 × 105 typical states. The binning is 3 × 10−3 and the integral is equal to 1.

where E ∈ [E0, 1], E0 being the minimum of the spectrum of H and δ the Dirac function.
Incidentally, note that equations (14) and (19) yield

lim
n→∞ E

(n)
0 � lim

n→∞ μ(n) = 0, E
(n)
0 � 2−[n/2], μ(n) = 2[n/2] + 2[(n+1)/2]

2n + 1
. (31)

The energy distribution function reads

Pβ(E) = e−βE

Z(β)

∫
dμC(z)δ(H(z) − E) (32)

which, for β = 0, simply reads

P0(E) = 1

Z(0)

∫
dμC(z)δ(H(z) − E). (33)

In figure 1 we show the probability density function P0(E) for n = 4. As emphasized
in section 2.4, this is one of those cases in which frustration appears, as for n = 4 qubits one
(numerically) finds E

(4)
0 = min π

(4)
ME = 1/3 > 1/4 = 1/NA [29, 31–33]. We clearly observe

the asymmetry of the curve, denoting a positive value of the skewness. This deformation
becomes less evident for larger values of n. As we will see, in the thermodynamic limit,
n → ∞, P0(E) will become more and more symmetric and will tend to a Gaussian.

Using equations (30)–(33) we obtain the expression of the energy distribution function at
arbitrary β in terms of its infinite temperature limit:

Pβ(E) = e−βEP0(E)∫ 1
E0

dE e−βEP0(E)
. (34)

Note that this equation is valid at fixed n.
By multiplying and dividing the last equation by |β| eβ and β eβE0 , respectively, and

remembering that

1

ε
e−x/ε ε→0−→ δ(x) (35)

we find

P−∞(E) = δ(E − 1), P∞(E) = δ(E − E0). (36)

8
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These limits are the counterparts of those discussed for the partition function and are reflected
in the asymptotic behavior of the average energy as a function of β

〈H 〉β = 1

Z(β)

∫
dμC(z)H e−βH =

∫ 1

E0

dE EPβ(E) = − ∂

∂β
ln Z(β). (37)

Indeed,

〈H 〉β→−∞ = 1, 〈H 〉β→+∞ = E0. (38)

More generally, the mth cumulant of H reads

κ
(m)
β [H ] = (−)m

∂m

∂βm
ln Z(β) = (−)m−1 ∂m−1

∂βm−1
〈H 〉β. (39)

We find
∂

∂β
〈H 〉β = −κ

(2)
β [H ] = −〈H 2〉β + 〈H 〉2

β ≡ −σ̄ 2
β � 0, (40)

which is non-positive. In particular

σ̄ 2 = σ̄ 2
0 = κ

(2)
0 [H ]. (41)

The average energy is a non-increasing function of β and has at least one inflexion point as a
function of β. Moreover,

κ
(3)
β [H ] = ∂2

∂β2
〈H 〉β = −1

2

∂

∂β
σ̄ 2

β . (42)

From the qualitative behavior of κ3
β one can obtain information about the width of the

distribution. For β → +∞ the curvature of 〈H 〉β is positive and therefore σ̄ 2
β is a decreasing

function.
From a qualitative point of view, one expects the behavior sketched in figure 2: for

β → 0+ (T → +∞), the distribution is bell-shaped (typical states); when β → +∞ (T → 0+)

the distribution tends to become more concentrated around E0. The energy distribution (34) at
sufficiently high temperatures (how high will be discussed in section 5.4, see equation (134))
can be obtained by observing that from equation (40)

Pβ(E) ∼ P0(E + βσ̄ 2). (43)

For larger values of β the left tail of the distribution starts ‘feeling’ the wall at E0. The value
of P0(E0) influences the behavior of Pβ(E). In general, P0(E0) can vanish or not, yielding
the behavior sketched in figures 2(a) and (b), respectively. One finds

Pβ(E) ∼ βr+1

r!
(E − E0)

r e−β(E−E0), (44)

where r is the order of the first nonvanishing derivative of P0(E) at E0. (Figures 2(a), (b)

display the case r = 0, 1, respectively.) Note that the only relic of P0(E) in (44) is r and
Pβ→∞(E) yields the second equation in (36). Actually if r = 0, equation (44) yields a pure
exponential converging to

P+∞(E) = δ(E − E0). (45)

If r � 1 the probability for finite β has an initial polynomial increase but still converges to a
Dirac δ in E0, corresponding to MMES. The analysis for β → −∞ is analogous (we expand
Pβ(E) around E = 1, which is the maximum of H); it yields the first equation in (36). In this
limit we obtain the separable states.

9
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β 0

Pβ E

1 NA E0 μ2
E

β 0

Pβ E

1 NA E0 μ2
E

(a) (b)

Figure 2. Qualitative sketch of equation (34), at fixed NA, in arbitrary units. The energy density
function is distributed around μ with standard deviation σ̄ at β = 0 (first bell-shaped curve at the
right in both panels) and moves toward E0 when β increases. In each panel, from right to left,
β changes in constant steps. The probability density rigidly shifts with β, for β � N7/2−log2 3:
see equation (133) and following discussion. Note that both E0 and μ are O(N−1/2). In (a)

P0(E0) �= 0; in (b) P0(E0) = 0.

5. High temperature expansion

This section is devoted to the study of the cumulants of P0(E). This will enable us to look at
some properties of the high temperature expansion of the distribution function of the potential
of multipartite entanglement. We recall that for β → 0 one obtains the typical states.

The high temperature expansion originates from the Taylor series

κ
(m)
β [H ] = (−)m

∞∑
j=0

βj

j !

(
∂m+j

∂βm+j
ln Z(β)

)∣∣∣∣∣∣
β=0

=
∞∑

j=0

(−β)j

j !
κ

(m+j)

β=0 [H ]. (46)

The average energy reads

〈H 〉β =
∞∑

m=1

(−β)m−1

(m − 1)!
κ

(m)
β=0[H ]

∼ 〈H 〉0 − β〈(H − 〈H 〉0)
2〉0 +

β2

2
〈(H − 〈H 〉0)

3〉0, (47)

while the free energy takes the form

F(β) = 1

β
ln Z(β)

∼ ln Z(0)

β
− 〈H 〉0 +

β

2
〈(H − 〈H 〉0)

2〉0 − β2

6
〈(H − 〈H 〉0)

3〉0. (48)

In the following three subsections we will evaluate the first three cumulants of the
distribution for β = 0 in order to characterize the high temperature expansion of the energy
distribution function.

10
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5.1. First cumulant

The joint probability density of z = (zk) ∈ C
N associated with the measure of typical states

(21) is

pN(z1, z2, . . . , zN) = (N − 1)!

πN
δ

⎛
⎝1 −

∑
1�k�N

|zk|2
⎞
⎠ . (49)

By integrating out N−M variables, one obtains

pN(z1, z2, . . . , zM) = (N − 1)!

(N − M − 1)! πM

⎛
⎝1 −

∑
1�k�M

|zk|2
⎞
⎠

N−M−1

, (50)

for 1 � M < N . In particular, the probability density of an arbitrary element of z is

pN(z1) = N − 1

π
(1 − |z1|2)N−2. (51)

Since 〈ei arg zj 〉0 = 0, the only nonvanishing averages of the type〈∏
k∈X

zk

∏
l∈Y

z̄l

〉
0

, (52)

with X, Y ⊂ Z
n
2, are obtained when the variables {zk} and {z̄l} are equal pair by pair, that is

when the sets of indices are equal, X = Y . The nonvanishing correlation functions are given
by 〈

k∏
j=1

|zqj
|2mj

〉
0

=
∫ k∏

j=1

|zj |2mj pN(z1, . . . , zN)
∏
j

dzj dz̄j

= (N − 1)!
∏k

j=1 mj !(
N − 1 +

∑k
j=1 mj

)
!
. (53)

A simple proof goes as follows. Extend the product to all N variables by letting some mj

vanish and consider the quantity, with αi > 0,〈
N∏

j=1

|zj |2mj e− ∑
k αk |zk |2

〉
0

=
∫

(R+)N

∏
j

(
dxj x

mj

j

)
e− ∑

k αkxk (N − 1)!
∫

R

dω

2π
e−iω(1−∑

k xk)

= (N − 1)!
∫

R

dω

2π
e−iω

∏
k

Jmk
(αk − iω), (54)

where

Jm(z) =
∫

R+
xm e−zx dx, (Re z > 0). (55)

Now, we have J0(z) = 1/z and Jm(z) = (−1)m dmJ0/dz = m!/zm+1, and thus〈∏
j

|zj |2mj e− ∑
k αk |zk |2

〉
0

= (N − 1)!
∫

dω

2π
e−iω

∏
j

(mj )!

(αj − iω)mj +1 . (56)

By setting αj = α for all j we obtain〈∏
j

|zj |2mj e−α
∑

k |zk |2
〉

0

= e−α

〈∏
j

|zj |2mj

〉
0

= (N − 1)!
∏
j

(mj )!
∫

dω

2π
e−iω 1

(α − iω)N+
∑

j mj
, (57)

11
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which when mj = 0 for all j reads

e−α = (N − 1)!
∫

dω

2π
e−iω 1

(α − iω)N
. (58)

Therefore,

e−α

〈∏
j

|zj |2mj

〉
0

= (N − 1)!
∏

j (mj )!

(N +
∑

j mj − 1)
e−α (59)

and (53) follows.
The average energy at β = 0 can be easily evaluated and is equal to the average purity μ

defined in (19):

〈H 〉0 = 〈E[πA]〉0 = E [〈πA〉0] = 〈πA〉0 = μ(n). (60)

Let us check the above result by direct computation, through (22). We obtain

〈H 〉0 =
∑

k,l∈Z
2n
2

�(k1, k2; l1, l2)〈zk1zk2 z̄l1 z̄l2〉0. (61)

Now,

〈zk1zk2 z̄l1 z̄l2〉0 = 〈|z1|2|z2|2〉0
(
δk1,l1δk2,l2 + δk1,l2δk2,l1

)
+ (〈|z1|4〉0 − 2〈|z1|2|z2|2〉0)δk1,l1δk1,l2δk1,k2 (62)

and thus

〈H 〉0 = 2〈|z1|2|z2|2〉0

∑
k1,k2∈Z

n
2

�(k1, k2; k1, k2)

+ (〈|z1|4〉0 − 2〈|z1|2|z2|2〉0)
∑
k∈Z

n
2

�(k, k; k, k), (63)

where the symmetry (27) was used.
By using (24) and by setting k = k1 ⊕ k2, we obtain∑

k1,k2

�(k1, k2; k1, k2) =
∑
k1,k2

g(0, k1 ⊕ k2) =
∑
k,k2

g(k, 0) = N
∑

k

g(k, 0). (64)

Since δk∧0 = 1 and
∑

0�s�n δ|k|,s = 1, by using (25) we can write∑
k

g(k, 0) =
∑

k

ĝ(|k|, 0) =
∑

k

ĝ(|k|, 0)
∑

0�s�n

δ|k|,s =
∑

0�s�n

ĝ(s, 0)
∑

k

δ|k|,s . (65)

The number of strings containing s ones is∑
k∈Z

n
2

δ|k|,s =
(

n

s

)
, (66)

and from (26) (
n

s

)
ĝ(s, 0) = 1

2

(
n

s

) (
n

nA

)−1 [(
n − s

nA − s

)
+

(
n − s

nA

)]

= 1

2

[(
nA

s

)
+

(
nĀ

s

)]
, (67)

whence ∑
k

g(k, 0) = 1

2

∑
s

[(
nA

s

)
+

(
nĀ

s

)]
= 1

2
(NA + NĀ), (68)
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where NA = 2nA and NĀ = 2nĀ . Therefore, one obtains∑
k1,k2

�(k1, k2; k1, k2) = N
∑

k

g(k, 0) = N(NA + NĀ)

2
. (69)

On the other hand,∑
k

�(k, k; k, k) =
∑

k

g(0, 0) =
∑

k

ĝ(0, 0) = N, (70)

because ĝ(0, 0) = 1. Summing up, we obtain

〈H 〉0 = N(NA + NĀ)〈|z1|2|z2|2〉0 + N(〈|z1|4〉0 − 2〈|z1|2|z2|2〉0), (71)

and since (see equation (53))

〈|z1|2|z2|2〉0 = 1

2
〈|z1|4〉0 = 1

N(N + 1)
, (72)

we obtain

〈H 〉0 = NA + NĀ

N + 1
, (73)

which equals the value (19) of the average purity μ(n). In the thermodynamic limit, N → ∞,
with NA = NĀ = √

N

〈H 〉0 ∼ 2√
N

. (74)

5.2. Second cumulant

The second cumulant is defined as

σ̄ 2 = κ
(2)
0 [H ] = 〈H 2〉0 − 〈H 〉2

0. (75)

In order to evaluate this quantity we will use a diagrammatic technique based on the definition
of the coupling function � and its properties (equation (27)). We start considering

〈H 2〉0 =
∑

k,l∈Z
4n
2

�(k1, k2; l1, l2)�(k3, k4; l3, l4)〈zk1zk2zk3zk4 z̄l1 z̄l2 z̄l3 z̄l4〉0. (76)

We must have {ki} = {lj } as sets, that is

li = kp(i), p ∈ P4 (77)

with 1 � i � 4, where P4 is the permutation group of {1, 2, 3, 4}. Therefore,

〈H 2〉0 =
∑
k∈Z

2n
2

∑
p∈P4

�(k1, k2; kp(1), kp(2))�(k3, k4; kp(3), kp(4))〈〈|zk1 |2|zk2 |2|zk3 |2|zk4 |2〉〉0,

(78)

where

〈〈|z1|2m|z2|2n|z3|2s |z4|2t 〉〉0 = 1

m!p!s!t!
〈|z1|2m|z2|2n|z3|2s |z4|2t 〉0. (79)

The above normalization takes into account the fact that if ki = kj for some i �= j the sum
over the permutation group P4 overcounts the number of different terms. For example, if
k1 = k2 and is different from the others, we get m = 2, n = 0, s = t = 1, and there is a factor
1/2!, while, if k1 = k2 = k3 �= k4, we get m = 3, n = s = 0, t = 1, and there is a factor 1/3!.

Since m + n + s + t = 4, from equation (53) we observe that

〈〈|z1|2m|z2|2n|z3|2s |z4|2t 〉〉0 = (N − 1)!

(N + 3)!
= 1

N(N + 1)(N + 2)(N + 3)
(80)
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(a) (b)

(c) (d)

Figure 3. Graphs used for the evaluation of the second cumulant (75). (a) Empty diagram.
(b) Graph with no links between the left and right pairs. (c) Graph with two links between the left
and right pairs. (d) Graphs with four links between the left and right pairs.

is independent of k ∈ Z
2n
2 . Therefore,

〈H 2〉0 = 〈|z1|2|z2|2|z3|2|z4|2〉0

∑
p∈P4

[p(1) p(2), p(3) p(4)], (81)

with the notation

[p(1) p(2), p(3) p(4)] =
∑
k∈Z

4n
2

�(k1, k2; kp(1), kp(2))�(k3, k4; kp(3), kp(4)). (82)

Note that by the symmetries (27) of �, we can swap p(1) ↔ p(2) or p(3) ↔ p(4), as well
as 1 ↔ 2 or 3 ↔ 4, so that

[w x, y z] = [x w, y z] = [w x, z y] = [x w, z y],

[w x, y z] = [y x,w z], if w, y ∈ {1, 2}, or w, y ∈ {3, 4}. (83)

Using these symmetries we can give a graphical representation of the quantity in
equation (82). Let us consider figure 3(a). Each vertex represents a pair (ki, kj ) in the
summation. The edges between vertices and the loops on the same vertex fix the value of
p(i). For instance, a double loop on (k1, k2) and (k3, k4) (see figure 3(b)) yields

[2 1, 3 4] =
∑

k

�(k1, k2; k2, k1)�(k3, k4; k3, k4). (84)

Each vertex has order 4 with two incoming and two outgoing edges. Each graph is oriented.
However, for simplicity, in the graphs of figure 3 we have not indicated the orientations since
in this case, as it is easy to see, they do not yield different contributions. As we shall see, this
will not be the case for higher cumulants, where graphs with different orientations represent
nonequivalent contributions.

We start considering graphs with no links between the left and right pairs; see figure 3(b).
The sum of this class of graphs is

[0 − link] = [1 2, 3 4] + [1 2, 4 3] + [2 1, 3 4] + [2 1, 4 3] = 4 [1 2, 3 4]. (85)

We have

[1 2, 3 4] =
∑

k

�(k1, k2; k1, k2)�(k3, k4; k3, k4) =
∑

k

g(0, k1 ⊕ k2) g(0, k3 ⊕ k4). (86)
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By setting l2 = k1 ⊕ k2 and l3 = k1 ⊕ k3, we obtain

[1 2, 3 4] =
∑
k1,k4

∑
l2,l3

g(0, l2) g(0, l3) = N2
∑
l2,l3

g(0, l2)g(0, l3) = N2

(∑
k

g(0, k)

)2

. (87)

Therefore, by using (68), we obtain

[0 − link] = 4 [1 2, 3 4] = N2(NA + NĀ)2. (88)

Let us now consider the graphs with two links between left and right pairs in figure 3(c).
The sum of this class of graphs is

[2 − link] = [1 3, 2 4] + [1 3, 4 2] + [3 1, 2 4] + [3 1, 4 2]

+ [2 3, 1 4] + [2 3, 4 1] + [3 2, 1 4] + [3 2, 4 1]

+ [1 4, 2 3] + [1 4, 3 2] + [4 1, 2 3] + [4 1, 3 2]

+ [2 4, 1 3] + [2 4, 3 1] + [4 2, 1 3] + [4 2, 3 1]

= 16 [1 3, 2 4]. (89)

One obtains

[1 3, 2 4] =
∑

k

�(k1, k2; k1, k3)�(k3, k4; k2, k4)

=
∑

k

g(k2 ⊕ k3, (k1 ⊕ k3) ∨ (k1 ⊕ k2))g(k2 ⊕ k3, (k2 ⊕ k4) ∨ (k3 ⊕ k4)). (90)

By setting l1 = k1 ⊕ k3, l2 = k2 ⊕ k3 and l4 = k3 ⊕ k4, we obtain

[1 3, 2 4] =
∑
k3

∑
l1,l2,l4

g(l2, l1 ∨ (l1 ⊕ l2))g(l2, (l2 ⊕ l4) ∨ l4)

= N
∑

l1,l2,l4

g(l2, l1 ∨ l2) g(l2, l2 ∨ l4), (91)

where we have used the (easy to prove) useful relation

l1 ∨ (l1 ⊕ l2) = l1 ∨ l2. (92)

We get

l2 ∧ (l1 ∨ l2) = (l1 ∧ l2) ∨ l2, (93)

so that the constraint of the function g, l2 ∧ (l1 ∨ l2) = 0, implies that l2 = 0. Therefore, by
using (68), we obtain

[2 − link] = 16 [1 3, 2 4] = 16N

(∑
k

g(k, 0)

)2

= 4N(NA + NĀ)2. (94)

The contribution of the graphs with four links between left and right pairs (see figure 3(d))
has the form

[4 − link] = [3 4, 1 2] + [4 3, 2 1] + [4 3, 1 2] + [3 4, 2 1] = 4[3 4, 1 2]. (95)

We have

[3 4, 1 2] =
∑

k

�(k1, k2; k3, k4)�(k3, k4; k1, k2) =
∑

k

�(k1, k2; k3, k4)
2

=
∑

k

g((k1 ⊕ k3) ∨ (k2 ⊕ k4), (k1 ⊕ k4) ∨ (k2 ⊕ k3))
2. (96)
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By setting l1 = k1 ⊕ k3, l4 = k1 ⊕ k4 and l2 = k1 ⊕ k2 ⊕ k3 ⊕ k4, we obtain

[3 4, 1 2] =
∑
k3

∑
l1,l2,l4

g(l1 ∨ l2, l4 ∨ l2)
2 = N

∑
l1,l4

g(l1, l4)
2, (97)

where we used relation (92) and the constraint l2 = 0 implied by (l1 ∨ l2) ∧ (l4 ∨ l2) = 0.
Therefore, we obtain

[4 − link] = 4[3 4, 1 2] = Nf2(N), (98)

where

f2(N) = 4
∑

k,l∈Z
n
2

g(k, l)2. (99)

Note that if

d = |A ∩ B̄| = |B ∩ Ā| ∈ [0, nA]. (100)

is the distance between bipartitions (A, Ā) and (B, B̄), defined as the number of qubits
belonging to A and not to B, then

f2(N) = 2

(
n

nA

)−1 ∑
0�d�nA

(
nA

d

) (
nĀ

d

)
2n/2[4n/4−d + 4−(n/4−d)]. (101)

See appendix B. Summing up, we obtain∑
p∈P4

[p(1) p(2), p(3) p(4)] = [0 − link] + [2 − link] + [4 − link]

= 4[1 2, 3 4] + 16[1 3, 2 4] + 4[3 4, 1 2]

= N(N + 4)(NA + NĀ)2 + Nf2(N). (102)

Therefore,

〈H 2〉0 = f2(N) + (N + 4)(NA + NĀ)2

(N + 1)(N + 2)(N + 3)
, (103)

and

σ̄ 2 = (N + 1)f2(N) − 2(NA + NĀ)2

(N + 1)2(N + 2)(N + 3)
. (104)

We have checked that the above analytic expression of the second cumulant, with f 2 given by
equation (99), agrees very well (within 1% up to n = 8) with the numerical estimates based
on the probability density function (obtained by sampling 5 × 104 typical states for each value
of n).

Finally, one proves that (see appendix B), in the limit N → ∞,

f2(N) ∼ 3
√

2Nα, (105)

with

α = log2 3 − 1 � 0.5850. (106)

Therefore, for N → ∞ we have

σ̄ 2 ∼ f2(N)

N3
= 3

√
2

N4−log2 3
= O(N−2.415). (107)

Incidentally, note that

σ̄ 2 =
(

n

nA

)−2 ∑
A,B

[〈πAπB〉0 − 〈πA〉0〈πB〉0], (108)
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n
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Figure 4. Difference between the analytic value of second cumulant, computed according to
equation (104) with f 2 given by (99), and its asymptotic limit, obtained by substituting (105) into
equation (104). The approximation is valid within a few percent even for n = 3.

so that if the bipartitions were independent, we would have obtained

σ̄ 2
ind =

(
n

nA

)−2 ∑
A

[〈
π2

A

〉
0 − 〈πA〉2

0

] =
(

n

nA

)−1

σ 2 ∼ N−3. (109)

Thus, the result in equation (107) detects an interference among different bipartitions. We
stress that the asymptotic estimate is very accurate even for small values of n. In figure 4 we
plot the difference between the analytic value of second cumulant, obtained using equation
(104) with f 2 given by equation (99), and its asymptotic limit, obtained by substituting
(105) into equation (104). We notice an oscillatory behavior: the asymptotic expression
systematically overestimates (underestimates) the second cumulant for even (odd) values of
n. On the other hand, this approximation is very good even for small values of n.

5.3. Third cumulant

The third cumulant is defined as

κ
(3)
0 [H ] = 〈(H − 〈H 〉0)

3〉0 = 〈H 3〉0 − 3〈H 2〉0〈H 〉0 + 2〈H 〉3
0. (110)

In analogy with the evaluation of the second cumulant, we have

〈H 3〉0 = 〈|z1|2|z2|2|z3|2|z4|2|z5|2|z6|2〉0

∑
p∈P6

[p(1) p(2), p(3) p(4), p(5) p(6)], (111)

with

[p(1) p(2), p(3) p(4), p(5) p(6)] =
∑
k∈Z

6n
2

�(k1, k2; kp(1), kp(2))

×�(k3, k4; kp(3), kp(4))�(k5, k6; kp(5), kp(6)) (112)

and P6 the permutation group of {1, 2, 3, 4, 5, 6}. From equation (53) we easily obtain

〈|z1|2|z2|2|z3|2|z4|2|z5|2|z6|2〉0 = 1

N(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)
. (113)

We start by considering connected graphs with three ears. A representative of this
equivalence class is depicted in figure 5(a). We have
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(a) (b)

(c)

Figure 5. Non-oriented connected graphs used for the evaluation of the third cumulant. (a) Three
ears. (b) Two ears. (c) One ear.

[1 6, 3 2, 5 4] =
∑

k

�(k1, k2; k1, k6)�(k3, k4; k3, k2)�(k5, k6; k5, k4)

=
∑

k

g(k2 ⊕ k6, (k1 ⊕ k6) ∨ (k1 ⊕ k2)) g(k2 ⊕ k4, (k2 ⊕ k3) ∨ (k3 ⊕ k4))

× g(k4 ⊕ k6, (k4 ⊕ k5) ∨ (k5 ⊕ k6))

=
∑

k1,k2,k3,k5

g(0, k1 ⊕ k2) g(0, k2 ⊕ k3) g(0, k2 ⊕ k5)

= N

(∑
k

g(0, k)

)3

= N
(NA + NĀ)3

8
, (114)

where the constraint in the definition of the function g has implied k2 = k4 = k6 and we used
equation (68). The degeneracy of this class of graphs is 128.

We now consider the class of connected graphs with two ears represented in figure 5(b).
We obtain

[1 3, 2 5, 4 6] =
∑

k

�(k1, k2; k1, k3)�(k3, k4; k2, k5)�(k5, k6; k4, k6)

=
∑

k1,k2,k4,k6

g(k1 ⊕ k2, 0) g(k2 ⊕ k4, 0) g(k4 ⊕ k6, 0)

= N

(∑
k

g(k, 0)

)3

= N
(NA + NĀ)3

8
, (115)

where we have imposed k2 = k3 and k4 = k5. The degeneracy of the class is 192.
The final class of non-oriented connected graphs is represented in figure 5(c). Its explicit

calculation yields
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[1 6, 2 5, 3 4] =
∑

k

�(k1, k2; k1, k6)�(k3, k4; k2, k5)�(k5, k6; k3, k4)

=
∑

k

g(k2 ⊕ k6, (k1 ⊕ k6) ∨ (k1 ⊕ k2))

× g((k2 ⊕ k3) ∨ (k4 ⊕ k5), (k3 ⊕ k5) ∨ (k2 ⊕ k4))

× g((k3 ⊕ k5) ∨ (k4 ⊕ k6), (k4 ⊕ k5) ∨ (k3 ⊕ k6))

=
∑

k1,...,k5

g(0, k1 ⊕ k2)g((k2 ⊕ k3) ∨ (k4 ⊕ k5), (k3 ⊕ k5) ∨ (k2 ⊕ k4))
2

=
∑

k1,...,k5

g(0, k1 ⊕ k2)g(k2 ⊕ k3, k2 ⊕ k4)
2

= N
∑

k

g(0, k)
∑
l1,l2

g(l1, l2)
2 = N

NA + NĀ

2

∑
l1,l2

g(l1, l2)
2

= N
NA + NĀ

8
f2(N), (116)

where we have used the constraint k2 = k6 and the function f2(N) defined in equation (99).
The degeneracy of this graph is 192.

In order to take into account the contribution of connected graphs with no ears, it is
necessary to consider two different classes of oriented graphs whose representatives are shown
in figures 6(a) and (b), respectively. For the first class (figure 6(a), nonvanishing ‘current’)
we have

[5 6, 1 2, 3 4] =
∑

k

�(k1, k2; k5, k6)�(k3, k4; k1, k2)�(k5, k6; k3, k4)

=
∑

k

g((k1 ⊕ k5) ∨ (k2 ⊕ k6), (k1 ⊕ k6) ∨ (k2 ⊕ k5))

× g((k1 ⊕ k3) ∨ (k2 ⊕ k4), (k2 ⊕ k3) ∨ (k1 ⊕ k4))

× g((k3 ⊕ k5) ∨ (k4 ⊕ k6), (k4 ⊕ k5) ∨ (k3 ⊕ k6))

=
∑

k1,k2,k3,k5

g(k1 ⊕ k5, k2 ⊕ k5) g(k1 ⊕ k3, k2 ⊕ k3)

× g(k3 ⊕ k5, k1 ⊕ k2 ⊕ k3 ⊕ k5)

= N
∑

k1,k2,k3

g(k1, k2) g(k1 ⊕ k3, k2 ⊕ k3) g(k3, k1 ⊕ k2 ⊕ k3)

= N
∑

k1,k2,k3

g(k1, k2 ⊕ k3) g(k2, k1 ⊕ k3) g(k3, k1 ⊕ k2)

= N f
(1)
3 (N), (117)

where we have used the constraints k4 = k1 ⊕ k2 ⊕ k3 and k6 = k1 ⊕ k2 ⊕ k5 and defined

f
(1)
3 (N) =

∑
k1,k2,k3

g(k1, k2 ⊕ k3) g(k2, k1 ⊕ k3) g(k3, k1 ⊕ k2). (118)

The degeneracy of this graph is 16. An analogous calculation can be carried out for the second
class of oriented graphs (figure 6(b), vanishing ‘current’). We obtain

[3 6, 5 2, 1 4] =
∑

k

�(k1, k2; k3, k6)�(k3, k4; k5, k2)�(k5, k6; k1, k4)

= N
∑

k1,k2,k3

g(k1, k2) g(k3, k2) g(k1 ⊕ k3, k2) = N f
(0)
3 (N) (119)
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(a) (b)

Figure 6. Oriented connected graphs used for the evaluation of the third cumulant. (a) Same
internal and external orientations of the edges (nonvanishing ‘current’). (b) Opposite internal and
external orientations of the edges (vanishing ‘current’).

(a) (b)

(c)

Figure 7. Disconnected graphs used for the evaluation of the third cumulant. (a) Six loops.
(b) Four loops. (c) Two loops.

with

f
(0)
3 (N) =

∑
k1,k2,k3

g(k1, k2) g(k3, k2) g(k1 ⊕ k3, k2). (120)

In this case, the degeneracy is 64.
The contribution of disconnected graphs (figure 7) can be computed by considering the

results obtained for the first and second cumulants. For the class of graphs represented in
figure 7(a), we have

[1 2, 3 4, 5 6] = N3 (NA + NĀ)3

8
, (121)

with degeneracy 8. In the case of the graph shown in figure 7(b), the result is

[1 3, 2 4, 5 6] = N
(NA + NĀ)2

4
N

(NA + NĀ)

2
= N2 (NA + NĀ)3

8
, (122)

with degeneracy 96. Finally from the disconnected graphs with two loops (figure 7(c)), we
obtain

[3 4, 1 2, 5 6] = N2 (NA + NĀ)

8
f2(N), (123)
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3 4 5 6 7 8
n

0.05
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0.20
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κ0
3

0 as
3 κ0

3

Figure 8. Difference between the analytic value of third cumulant, computed according to equation
(125) with f 2, f

(0)
3 and f

(1)
3 given by (99), (120), (120), and their asymptotic limits, obtained

by substituting (105), (126), (127) into equation (125). The approximation is valid within a few
percent for n � 4.

with degeneracy 24. In conclusion, we find

〈H 3〉0 = 1

(N + 1)(N + 2)(N + 3)(N + 4)(N + 5)

(
16f

(1)
3 (N) + 64f

(0)
3 (N) + 3(N + 8)

× (NA + NĀ)f2(N) + (NA + NĀ)3(N2 + 12N + 40)
)

(124)

and, therefore,

κ
(3)
0 [H ] = 1

(N + 1)3(N + 2)(N + 3)(N + 4)(N + 5)

× (
16(N + 1)2f

(1)
3 (N) + 64(N + 1)2f

(0)
3 (N)

− 36(N + 1)(NA + NĀ)f2(N) − 8(NA + NĀ)3(N − 5)
)
. (125)

We have checked that the above analytic expression of the third cumulant, with f 2, f
(0)
3 and

f
(1)
3 given by (99), (120) and (118), respectively, agrees very well (less than 1% for n = 1 ÷ 7

and a few % for n = 8) with the numerical estimates based on the probability density function
(obtained by sampling 5 × 104 typical states for each value of n).

Finally, in the limit N → ∞, one can prove that (see appendix C)

f
(0)
3 (N) ∼ c N5−γ , (126)

with c � 1.05385 and γ � 4.1583 given by (C.30) and (C.31), and that (see appendix D)

f
(1)
3 (N) ∼ Nα, (127)

with α � 0.5850 given by (106). Therefore, by recalling the asymptotic expression for f2(N)

(105), we find that the graph shown in figure 6(b) dominates over that in figure 6(a) and

κ
(3)
0 [H ] ∼ 64 c N−γ � 67.443 N−4.1583. (128)

In figure 8, we plot the difference between the analytic value of third cumulant and its
asymptotic limit, obtained by substituting (105), (126), (127) into equation (125). We again
observe an oscillating behavior. The approximation is good for n � 4.

5.4. Gaussian approximation

We can now summarize the results obtained for the first three cumulants and try to get a broader
picture. Equations (73), (104) and (125) are all exact. Their asymptotic expansions for large
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N are given in equations (74), (107) and (128). By plugging these results into equations (47)
and (48), we obtain the asymptotic expressions of the average energy

〈H 〉β ∼ 2√
N

− β
3
√

2

N3−α
+

β2

2

64c

Nγ

� 2

N0.5
− β

4.243

N2.415
+

β2

2

67.443

N4.1583
(129)

and the free energy

F(β) ∼ ln Z(0)

β
− 2√

N
+

β

2

3
√

2

N3−α
− β2

6

64c

Nγ

� ln Z(0)

β
− 2

N0.5
+

β

2

4.243

N2.415
− β2

6

67.443

N4.1583
(130)

where

c � 1.054, α = log2 3 − 1 � 0.5850, γ = 4.1583. (131)

See equations (C.30) and (C.31).
If N is large enough and the first two cumulants at β = 0 suffice, the energy distribution

(33) can be taken to be Gaussian

P0(E) ∼ 1√
2πσ̄ 2

exp

(
− (E − μ)2

2σ̄ 2

)
, (132)

where μ and σ̄ are given in (74) and (107), respectively. The energy distribution at arbitrary
temperature is then (see equation (43))

Pβ(E) ∼ 1√
2πσ̄ 2

exp

(
− (E − μ + βσ̄ 2)2

2σ̄ 2

)
. (133)

This is valid for relatively small β:

μ − βσ̄ 2 − σ̄ � 0 ⇔ β � μ/σ̄ 2 ∼ N7/2−log2 3. (134)

Up to this value the probability density rigidly shifts with β, as is apparent in figure 2, which
was obtained by numerically solving equation (34).

5.5. A few comments

The behavior of the cumulants derived in this section is very peculiar. The second and
third cumulants follow a nontrivial power dependence, with transcendental exponents (see
equations (129)). Interestingly, close scrutiny of the calculation in section 5.3 shows also that
3−α, the exponent that governs the N-dependence of σ̄ 2, is found in a class of (nondominant)
graphs that appear in the evaluation of the third cumulant: the exponent 5 − α stems from
the graph shown in figure 6(a) (the dominant exponent γ stemming from the graph shown in
figure 6(b)). This might suggest a possible recursion of the exponent α at all orders in the
cumulant expansion. At this stage, we are unable to say if at higher orders the dominant graph
for κ

(3)
0 in figure 6(b) cancels, yielding a series in Nq(α) with q a function of α.
It would be important to go beyond the Gaussian approximation in order to evaluate the

behavior of the left tail of the probability density function, close to πME = E � E0. See
figures 1 and 2. This would give us some precious information about the features of MMES
and the very structure of entanglement frustration [24]. In particular, it would be interesting
to understand the role played by the interference among the bipartitions, in connection with
the appearance of frustration in MMESs. See for instance the asymptotic behavior of the
second cumulant in equations (107)–(109) and the short discussion that follows. Additional
investigation is necessary in order to elucidate these intriguing issues.
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6. Concluding remarks and outlook

We have built a statistical mechanical approach to multipartite entanglement, by introducing a
partition function in order to tackle a complex optimization problem, whose solutions are the
maximally multipartite entangled states that appear as minimal energy configurations.

The scheme adopted here is general. In classical statistical mechanics, temperature is
used to fix the energy to a given value in the thermodynamic limit. Analogously, the fictitious
temperature introduced here localizes the measure on a set of states whose entanglement
(energy) is fixed, and can be larger or smaller than the entanglement associated with typical
states.

Remarkably, a strategy like the one adopted in this paper, when applied to the simpler case
of bipartite entanglement (at a fixed bipartition) [47], brings to light an involved landscape
of phase transitions for the purity. Clearly, the multipartite version of the problem is much
more involved, as the picture that emerges is complex and unearths a remarkable interplay
between multipartite entanglement and frustration. It would therefore be of great interest to
understand whether the phase transition that occurs in the bipartite situation, when there is no
average over the bipartitions, survives and has a counterpart in the multipartite scenario. This
possibility will be explored in the future.

One important property that we have not investigated here and that is often used to
characterize multipartite entanglement is the so-called monogamy of entanglement [15, 48] that
essentially states that entanglement cannot be freely shared among the parties. Interestingly,
although monogamy is a typical property of multipartite entanglement, it is expressed in terms
of a bound on a sum of bipartite entanglement measures. This is reminiscent of the approach
taken in this paper. The curious fact that bipartite sharing of entanglement is bounded might
have interesting consequences in the present context. It would be worth understanding whether
monogamy of entanglement generates frustration.

Finally, we think that the characterization of multipartite entanglement proposed here can
be important for the analysis of the entanglement features of many-body systems, such as spin
systems and systems close to criticality.
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Appendix A.

We derive here expression (24) of the coupling function. See [46]. We start from definition
(23) that can be rewritten as

�(k, k′; l, l′) = 1

2

(
n

nA

)−1

(�̃(k, k′; l, l′; [n/2]) + �̃(k′, k; l, l′; [n/2])), (A.1)

where

�̃(k, k′; l, l′; nA) =
∑

|A|=nA

δkA,l′Aδk′
A,lAδkĀ,lĀ δk′

Ā
,l′

Ā
. (A.2)

Let us fix a quadruple of binary strings (k, k′, l, l′) and a dimension nA. See figure A1. A
bipartition (A, Ā), with |A| = nA, yields a nonvanishing contribution to sum (A.2) when

δkA,l′Aδk′
A,lAδkĀ,lĀ δk′

Ā
,l′

Ā
= 1, (A.3)
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Figure A1. Graphic representation of the combination of binary strings contributing to sum (A.2).

that is when

kA = l′A, k′
A = lA, kĀ = lĀ, k′

Ā
= l′

Ā
, (A.4)

where we recall that kA = lA means that the substrings of k and l are equal, namely ki = li
for all i ∈ A. By noting that two bits ki and li are equal when ki ⊕ li = 0, the above condition
can be rephrased as

kA ⊕ l′A = 0, k′
A ⊕ lA = 0, kĀ ⊕ lĀ = 0, k′

Ā
⊕ l′

Ā
= 0, (A.5)

that is

(kA ⊕ l′A) ∨ (k′
A ⊕ lA) = 0, (kĀ ⊕ lĀ) ∨ (k′

Ā
⊕ l′

Ā
) = 0. (A.6)

Summarizing, a bipartition (A, Ā) yields a nonvanishing contribution to (23) if and only if the
following substrings are zero

aĀ = 0 and bA = 0, (A.7)

where

a = (k ⊕ l) ∨ (k′ ⊕ l′) and b = (k ⊕ l′) ∨ (k′ ⊕ l). (A.8)

Note that equation (A.7) implies that

a ∧ b = 0, (A.9)

since (a ∧ b)A = aA ∧ 0 = 0 and (a ∧ b)Ā = 0 ∧ bĀ = 0. On the other hand, the substrings
aA and bĀ are totally free, whence

|a| = |aA| � |A| = nA, |b| = |bĀ| � |Ā| = nĀ. (A.10)

It is easy to see that (A.9) and (A.10) are also sufficient conditions for the existence of a
partition (A, Ā) that satisfies (A.7).

In conclusion, �̃(k, k′; l, l′; nA) �= 0 when

a ∧ b = 0, with |a| � nA, |b| � nĀ. (A.11)

Therefore,

�̃(k, k′; l, l′; nA) = δa∧b, 0 χ[0,nA](|a|) χ[0,nĀ](|b|) #(k, k′, l, l′), (A.12)

where χG is the characteristic function of set G and #(k, k′, l, l′) is the number of terms in the
sum in (A.1) that contribute to the function �̃.
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Note that, since by (A.11) both the strings a and b cannot be 1 at the same position, the
set S is partitioned into three disjoint subsets (see figure A1)

S = S0 ∪ A1 ∪ B1, (A.13)

where

S0 = {i ∈ S | ai = 0, bi = 0},
A1 = {i ∈ S | ai = 1, bi = 0}, (A.14)

B1 = {i ∈ S | ai = 0, bi = 1}.
Obviously, |A1| = |a| � nA and |B1| = |b| � nĀ.

The number of terms #(k, k′, l, l′) is given by the number of bipartitions (A, Ā) with
|A| = nA such that

A1 ⊂ A and B1 ⊂ Ā. (A.15)

Since A ∩ Ā = ∅, parties A and Ā contend for S0, namely

A = A1 ∪ (S0 ∩ A) and Ā = B1 ∪ (S0 ∩ Ā). (A.16)

Thus, the number of bipartition is the number of ways of picking |A\A1| unordered outcomes
from |S0| possibilities. Since |A\A1| = |A|− |A1| = nA −|a| and |S0| = |S|− |A1|− |B1| =
n − |a| − |b|, one obtains

#(k, k′, l, l′) =
(

n − |a| − |b|
nA − |a|

)
. (A.17)

Substituting equation (A.17) into equation (A.12) and by defining the binomial coefficient to
be identically zero when its arguments are negative, we note that the characteristic functions
in (A.12) yield always 1, and obtain equation (24).

Appendix B.

We derive here the asymptotic (for large N) behavior of the function f2(N) defined in equation
(105). Let us define the distance between bipartitions (A, Ā) and (B, B̄) as the number of
qubits belonging to A and not to B

d = |A ∩ B̄| = |B ∩ Ā| ∈ [0, nA]. (B.1)

The number of pairs of bipartitions at a distance d is

nd =
(

n

nA

) (
nA

d

) (
nĀ

d

)
. (B.2)

Therefore, the sum over the bipartitions can be rewritten as a sum over d∑
|A|,|B|=nA

[· · ·] =
(

n

nA

) nA∑
d=0

(
nA

d

) (
nĀ

d

)
[· · ·]. (B.3)

Let us consider for instance∑
k,l∈Z

n
2

g(k, l)2 = 1

N

∑
k∈Z

4n
2

�(k1, k2; k3, k4)
2

= 1

N

(
n

nA

)−2 ∑
k

∑
|A|,|B|=nA

1

4
(δ(k;A)δ(k;B) + δ(k;A)δ(k; B̄)

+ δ(k; Ā)δ(k;B) + δ(k; Ā)δ(k; B̄))

= 1

N

(
n

nA

)−2 ∑
k

∑
|A|,|B|=nA

1

2
(δ(k;A)δ(k;B) + δ(k;A)δ(k; B̄)), (B.4)
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where

δ(k, k′, l, l′;A) = δkA,l′Aδk′
A,lAδkĀ,lĀ δk′

Ā
,l′

Ā
. (B.5)

Let us start by showing that

h(A,B) =
∑

k

δ(k;A)δ(k;B) =
∑

k,k′,l,l′
δkA,l′Aδk′

A,lAδkB,l′B δk′
B,lB δkĀ,lĀ δk′

Ā
,l′

Ā
δkB̄ ,lB̄ δk ′̄

B
,l ′̄

B
(B.6)

depends only on d = |A ∩ B̄|. When A = B, i.e. d = 0,

h(A,A) =
∑

k

δ(k;A)2 =
∑

k

δ(k;A) =
∑

k,k′,l,l′
δkA,l′Aδk′

A,lAδkĀ,lĀ δk′
Ā
,l′

Ā
= N2, (B.7)

while, when d �= 0, we obtain

h(A,B) =
(

N

2d

)2

= 4−dN2. (B.8)

Therefore, we obtain∑
k

∑
|A|,|B|=nA

δ(k;A)δ(k;B) =
∑

|A|,|B|=nA

h(A,B)

=
∑

0�d�nA

nd 4−dN2 =
(

n

nA

) ∑
0�d�nA

4−d

(
nA

d

) (
nĀ

d

)
. (B.9)

Analogously, we find∑
k

∑
|A|,|B|=nA

δ(k;A)δ(k; B̄) =
(

n

nA

) ∑
0�d�nA

4d

(
nA

d

) (
nĀ

d

)
. (B.10)

Putting together equations (B.9) and (B.10), we obtain

f2(N) = 4
∑
k,l

g(k, l)2 = 2

(
n

nA

)−1 ∑
0�d�nA

(
nA

d

) (
nĀ

d

)
(4n/2−d + 4d)

= 2

(
n

nA

)−1 ∑
0�d�nA

(
nA

d

) (
nĀ

d

)
2n/2[4n/4−d + 4−(n/4−d)]. (B.11)

We note that the terms in the summation strongly depend on the ratio 2d/n. In the limit
n → +∞ only the terms with d = n/6 and d = n/3 give a significant contribution to the
summation (see figure B1). Let us consider the case of even n (in the thermodynamic limit
the result for an odd number of qubits is the same)

nA = nĀ = n/2. (B.12)

By Stirling’s approximation n! ∼ (n/e)n
√

2πn (for n large) and by defining the new variable

x = 2d

n
, (B.13)

after a straightforward calculation, we obtain

f2(N) ∼ 2

√
πn

2
2−n

∑
d

1

πnx (1 − x)
exp {nS(x)}2n/2

[
4

n
2 ( 1

2 −x) + 4− n
2 ( 1

2 −x)
]

∼
√

2πn

∫ 1

0
dx

1

2πx(1 − x)
[exp {n[S(x) − x ln 2]} + 2−n exp {n[S(x) + x ln 2]}],

(B.14)
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0 n 6 n 4 n 3 n 2
d

Figure B1. d-Dependence of the terms
(
nA
d

)(nĀ
d

)
2n/2[4n/4−d + 4−(n/4−d)] in the sum (B.11).

where

S(x) = −x ln x − (1 − x) ln(1 − x) (B.15)

is the Shannon entropy. Using the saddle point approximation in the integrand, we obtain

f2(N) ∼
√

2πn

∫ 1

0
dx

9

4π

[
exp

{
n

[
S

(
1

3

)
− 1

3
ln 2 +

1

2
S ′′

(
1

3

) (
x − 1

3

)2
]}

+ 2−n exp

{
n

[
S

(
2

3

)
+

2

3
ln 2 +

1

2
S ′′

(
2

3

) (
x − 2

3

)2
]}]

=
√

2πn

∫ 1

0
dx

9

4π
exp

{
n ln

3

2

}

×
[

exp

{
−n

9

4

(
x − 1

3

)2
}

+ exp

{
−n

9

4

(
x − 2

3

)2
}]

∼ 9√
2π

(
3

2

)n ∫ +∞

−∞
dx exp

{
−9

4
x2

}
= 3

√
2Nα, (B.16)

where

α = log2 3 − 1 � 0.584 963. (B.17)

This is the asymptotic expression (105) used in equation (107).

Appendix C.

We evaluate here the asymptotic behavior of the function f
(0)
3 (N) defined in (120). By using

definition (25), (120) can be written as

f
(0)
3 (N) =

∑
k1,k2,k3

g(k1, k2) g(k3, k2) g(k1 ⊕ k3, k2)

=
∑

k1,k2,k3

δk1∧k2,0δk2∧k3,0δk2∧(k1⊕k3),0ĝ(|k1|, |k2|) ĝ(|k3|, |k2|) ĝ(|k1 ⊕ k3|, |k2|)

=
∑

s0,s1,s2,s3

f (s0, s1, s2, s3)ĝ(s1, s2) ĝ(s3, s2) ĝ(s1 + s3 − 2s0, s2), (C.1)

where

f (s0, s1, s2, s3) =
∑

k1,k2,k3

δk1∧k2,0δk2∧k3,0δs1,|k1|δs2,|k2|δs3,|k3|δs0,|k1∧k3| (C.2)
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and we have used

k1 ∧ k2 = 0, k2 ∧ k3 = 0 ⇒ k2 ∧ (k1 ⊕ k3) = 0, (C.3)

|k1 ⊕ k3| = |k1| + |k3| − 2|k1 ∧ k3|. (C.4)

It is straightforward to count the number of terms in (C.2) and obtain

f (s0, s1, s2, s3) =
(

n

s2

) (
n − s2

s1

) (
s1

s0

) (
n − s2 − s1

s3 − s0

)

= n!

s2!s0!(s1 − s0)!(s3 − s0)!(n − s2 − s1 − s3 + s0)!
. (C.5)

By substituting s1 → s1 + s0 and s3 → s3 + s0 in equation (C.1), we obtain

f
(0)
3 (N) =

∑
s0,s1,s2,s3

n!

s0!s1!s2!s3!(n − s1 − s2 − s3 − s0)!

× ĝ(s1 + s0, s2) ĝ(s3 + s0, s2) ĝ(s1 + s3, s2)

=
∑

s

(
n

s0, s1, s2, s3

)
ĝ(s1 + s0, s2) ĝ(s3 + s0, s2) ĝ(s1 + s3, s2),

(C.6)

where (
n

i1, i2, . . . , ik

)
= n!

�k
j=1(ij !)

(
n − ∑k

j=1 ij
)
!

(C.7)

denotes the multinomial coefficient. A relabeling of the dummy variables yields

f
(0)
3 (N) =

∑
s

(
n

s0, s1, s2, s3

)
ĝ(s1 + s2, s0) ĝ(s2 + s3, s0) ĝ(s3 + s1, s0). (C.8)

From definition (26), one easily obtains

ĝ(s, t) = 1

2

(
n

s, t

)−1 [(
nA

s

) (
nĀ

t

)
+

(
nA

t

) (
nĀ

s

)]
. (C.9)

Therefore, for nA = nĀ = n/2, we finally obtain

f
(0)
3 (N) =

∑
s

(
n

s0, s1, s2, s3

) (
n/2
s0

)3 ∏
1�i�3

(
n

s0, si + si+1

)−1 (
n/2

si + si+1

)
. (C.10)

Now, by using the Stirling approximation and scaling the variables

σ0 = s0

n
, σ1 = s1

n
, σ2 = s2

n
, σ3 = s3

n
(C.11)

we obtain, after some algebra, the asymptotic form

f
(0)
3 (N) ∼ 1

(2πn)2

∑
s

A(σ0, σ1, σ2, σ3) exp{nS(σ0, σ1, σ2, σ3)}. (C.12)

In equation (C.12), we have set (with the implicit convention that the indices are cyclical)

A =
√√√√ ∏3

i=1(1 − σ0 − σi − σi+1)

σ0(1 − 2σ0)3(1 − σ0 − σ1 − σ2 − σ3)
∏3

i=1 σi(1 − 2σi − 2σi+1)
(C.13)
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and

S(σ0, σ1, σ2, σ3) = S4(σ0, σ1, σ2, σ3) − S2(σ0, σ1 + σ2) − S2(σ0, σ2 + σ3)

− S2(σ0, σ3 + σ1) + 3
2S1(2σ0) + 1

2S1(2σ1 + 2σ2)

+ 1
2S1(2σ2 + 2σ3) + 1

2S1(2σ3 + 2σ1), (C.14)

with

Sn(x1, . . . , xn) = −
n∑

i=1

xi log xi −
(

1 −
n∑

i=1

xi

)
log

(
1 −

n∑
i=1

xi

)
. (C.15)

By noting that

Sn(x1, . . . , xn) =
n∑

i=1

xi

∂Sn

∂xi

− log

(
1 −

n∑
i=1

xi

)
, (C.16)

one easily obtains

S = σ0
∂S

∂σ0
+

3∑
i=1

σi

∂S

∂σi

+ S0, (C.17)

with

S0 = 1

2
log

∏3
i=1(1 − σ0 − σi − σi+1)

2

(1 − σ0 − σ1 − σ2 − σ3)2(1 − 2σ0)3
∏3

i=1(1 − 2σi − 2σi+1)
. (C.18)

In the limit n → ∞, the main contribution comes from the saddle point (σ ∗
0 , σ ∗

1 , σ ∗
2 , σ ∗

3 ),
solution to the system

∂S

∂σi

= 0, with i = 0, 1, 2, 3, (C.19)

that reads

(1 − σ0 − σ1 − σ2 − σ3)(1 − 2σ0)
3 = 8σ0

3∏
i=1

(1 − σ0 − σi − σi+1), (C.20)

(1 − σ0 − σ1 − σ2 − σ3) (1 − 2σi − 2σi+1) (1 − 2σi − 2σi+2)

= 4σi(1 − σ0 − σi − σi+1)(1 − σ0 − σi − σi+2), (C.21)

with i = 1, 2, 3. In the limit n → ∞, we obtain

f
(0)
3 (N) ∼

( n

2π

)2
A∗ enS∗

0

∫
R4

exp

⎛
⎝n

2

3∑
i,j=0

∂2S∗

∂σi∂σj

(σi − σ ∗
i )(σj − σ ∗

j )

⎞
⎠ dσ0 dσ1 dσ2 dσ3

= A∗ det

(
∂2S∗

∂σi∂σj

)−1/2

exp(nS∗
0 ) (C.22)

where the starred functions A∗, S∗ and ∂2S∗/∂σi∂σj are evaluated at the saddle point
(σ ∗

0 , σ ∗
1 , σ ∗

2 , σ ∗
3 ).

The symmetry of the equations suggests to look at a symmetric solution of (C.21) with

σi = σ with i = 1, 2, 3, (C.23)

which yields

(1 − σ0 − 3σ)(1 − 2σ0)
3 = 8σ0(1 − σ0 − 2σ)3,

(1 − σ0 − 3σ)(1 − 4σ)2 = 4σ(1 − σ0 − 2σ)2.
(C.24)
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We get

A∗ =
√

(1 − σ ∗
0 − 2σ ∗)3

σ ∗
0 σ ∗3(1 − 2σ ∗

0 )3(1 − 4σ ∗)3(1 − σ ∗
0 − 3σ ∗)

=
√

1

8σ ∗2
0 σ ∗3(1 − 4σ ∗)3

, (C.25)

S∗
0 = 1

2
log

(1 − σ ∗
0 − 2σ ∗)6

(1 − σ ∗
0 − 3σ ∗)2(1 − 2σ ∗

0 )3(1 − 4σ ∗)3
= 1

2
log

(1 − 2σ ∗
0 )3

64σ ∗2
0 (1 − 4σ ∗)3

, (C.26)

and

det

(
∂2S∗

∂σi∂σj

)
= (1 − σ ∗

0 − 5σ ∗ + 2σ ∗(4σ ∗ + σ ∗
0 ))2

σ ∗
0 σ ∗3(1 − 2σ ∗

0 )(1 − 4σ ∗)3(1 − σ ∗
0 − 3σ ∗)(1 − σ ∗

0 − 2σ ∗)3

× (1 − 2σ ∗ − σ ∗2
0 − 4σ ∗2 + 4σ ∗σ ∗

0 (8σ ∗ + 2σ ∗
0 − 3)). (C.27)

The solution of the system that gives the largest contribution is

σ ∗
0 = 13

36
− 13

36
3

√
197 − 18

√
113

− 1

36
3

√
197 − 18

√
113 � 0.108 955,

σ ∗ = − 5043923

144(197 − 18
√

113)7/3
+

158161
√

113

48(197 − 18
√

113)7/3

+
980473

72(197 − 18
√

113)2
− 2561

√
113

2(197 − 18
√

113)2

− 18119

144(197 − 18
√

113)5/3
+

563
√

113

48(197 − 18
√

113)5/3

� 0.104767. (C.28)

Plugging these results into equation (C.22), we obtain

f
(0)
3 (N) ∼ c N5−γ (C.29)

where

c = A∗ det

(
∂2S∗

∂σi∂σj

)−1/2

= (1 − σ ∗
0 − 2σ ∗)3

1 − 2σ ∗
0

× 1

(1 − σ ∗
0 − 5σ ∗ + 2σ ∗(4σ ∗ + σ ∗

0 ))

√
1 − 2σ ∗ − σ ∗2

0 − 4σ ∗2 + 4σ ∗σ ∗
0 (8σ ∗ + 2σ ∗

0 − 3)

� 1.053 85, (C.30)

and

γ = 5 − S∗
0 log2 e = 5 − 1

2
log2

[
(1 − 2σ ∗

0 )3

64σ ∗2
0 (1 − 4σ ∗)3

]
� 4.1583. (C.31)
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Appendix D.

We evaluate here the asymptotic behavior of the function f
(1)
3 (N) defined in (118). By using

definition (25), we have

f
(1)
3 (N) =

∑
k1,k2,k3

g(k1, k2 ⊕ k3) g(k2, k1 ⊕ k3) g(k3, k1 ⊕ k2)

=
∑

k1,k2,k3

δk1∧(k2⊕k3),0δk2∧(k1⊕k3),0δk3∧(k1⊕k2),0

× ĝ(|k1|, |k2 ⊕ k3|) ĝ(|k2|, |k1 ⊕ k3|) ĝ(|k3|, |k1 ⊕ k3|)
=

∑
s0,s1,s2,s3

h(s0, s1, s2, s3)ĝ(s1, s2 + s3 − 2s0) ĝ(s2, s1 + s2 − 2s0)

× ĝ(s3, s1 + s2 − 2s0), (D.1)

where

h(s0, s1, s2, s3) =
∑

k1,k2,k3

δs1,|k1|δs2,|k2|δs3,|k3|δs0,|k1∧k2|δs0,|k1∧k3|δs0,|k2∧k3| (D.2)

and we have used

k1 ∧ (k2 ⊕ k3) = 0, k2 ∧ (k1 ⊕ k3) = 0, k3 ∧ (k1 ⊕ k2) = 0

⇒ k1 ∧ k2 = k1 ∧ k3 = k2 ∧ k3, (D.3)

ki ⊕ kj | = |ki | + |kj | − 2|ki ∧ kj | ∀ i, j = 1, 2, 3.

We find

h(s0, s1, s2, s3) = n!

s0!(s1 − s0)!(s2 − s0)!(s3 − s0)!(n − s2 − s1 − s3 + 2s0)!
. (D.4)

Using the substitution s1 → s1 + s0, s2 → s2 + s0 and s3 → s3 + s0 in equation (D.1), we obtain

f
(1)
3 (N) =

∑
s

(
n

s0, s1, s2, s3

)
ĝ(s1 + s0, s2 + s3) ĝ(s2 + s0, s1 + s3) ĝ(s3 + s0, s1 + s2), (D.5)

in terms of the multinomial coefficient (C.7). Using (C.9 ) for nA = nĀ = n/2, we finally
obtain

f
(1)
3 (N) =

∑
s

(
n

s0, s1, s2, s3

) ∏
1�i�3

(
n

s0 + si, si+1 + si+2

)−1 (
n/2

s0 + si

) (
n/2

si + si+1

)
. (D.6)

Using the Stirling approximation and equation (C.11), we obtain

f
(1)
3 (N) ∼ 1

(2πn)2

∑
s

A(σ0, σ1, σ2, σ3) exp{nS(σ0, σ1, σ2, σ3)}, (D.7)

where

A(σ0, σ1, σ2, σ3) = (1 − σ0 − σ1 − σ2 − σ3)√
σ0σ1σ2σ3

∏
1�i�3(1 − 2σ0 − 2σi)(1 − 2σi+1 − 2σi+2)

(D.8)

and

S(σ0, σ1, σ2, σ3) = S4(σ0, σ1, σ2, σ3) − S2(σ0 + σ1, σ2 + σ3)

− S2(σ0 + σ2, σ3 + σ1) − S2(σ0 + σ3, σ1 + σ2)

+ 1
2S1(2σ0 + 2σ1) + 1

2S1(2σ0 + 2σ2) + 1
2S1(2σ0 + 2σ3)

+ 1
2S1(2σ1 + 2σ2) + 1

2S1(2σ2 + 2σ3) + 1
2S1(2σ3 + 2σ1), (D.9)

31



J. Phys. A: Math. Theor. 43 (2010) 225303 P Facchi et al

with the entropies defined in equation (C.15). By (C.16) one obtains (C.17) with

S0 = 1

2
log

(1 − σ0 − σ1 − σ2 − σ3)
4∏

1�i�3(1 − 2σ0 − 2σi)(1 − 2σi+1 − 2σi+2)
. (D.10)

In the limit n → +∞, we can use the saddle point approximation. The saddle point is
solution to the set of equations

∂S

∂σi

= 0, with i = 0, 1, 2, 3, (D.11)

that reads

(1 − 2σi − 2σi+1)(1 − 2σi − 2σi+2)(1 − 2σi − 2σi+3) = 8σi(1 − σ0 − σ1 − σ2 − σ3)
2.

(D.12)

The symmetric solution, σi = σ for all i, corresponds to the largest contribution and is given
by

σ∗ = 1
12 . (D.13)

As in (C.22), in the limit n → ∞ we obtain

f
(1)
3 (N) ∼ A∗ det

(
∂2S∗

∂σi∂σj

)−1/2

exp
(
nS∗

0

)
, (D.14)

with

A∗ = 1

σ ∗2(1 − 4σ ∗)2
= 324, det

(
∂2S∗

∂σi∂σj

)
= 1

σ ∗4(1 − 4σ ∗)4
= 3242, (D.15)

and

S∗
0 = log

1

(1 − 4σ ∗)
= log

3

2
. (D.16)

We finally obtain

f
(1)
3 (N) ∼ en log(3/2) = Nα, for N → ∞, (D.17)

with

α = log2 3 − 1 � 0.584 963. (D.18)

References

[1] Schrödinger E 1935 Proc. Cambridge Phil. Soc. 31 555
[2] Schrödinger E 1936 Proc. Cambridge Phil. Soc. 32 446
[3] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[4] Wootters W K 2001 Quantum Inf. Comput. 1 27
[5] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[6] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[9] Bennett C H and Brassard G 1984 Quantum cryptography: public key distribution and coin tossing Proc. IEEE

Int. Conf. on Computers Systems and Signal Processing (Bangalore, India) pp 175–9
[10] Ekert A 1991 Phys. Rev. Lett. 67 661
[11] Deutsch D, Ekert A, Rozsa P, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[12] Fuchs C A, Gisin N, Griffiths R B, Niu C-S and Peres A 1997 Phys. Rev. A 56 1163
[13] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[14] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[15] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306

32

http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1017/S0305004100019137
http://dx.doi.org/10.1103/RevModPhys.80.517
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1103/PhysRevA.56.1163
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.61.052306


J. Phys. A: Math. Theor. 43 (2010) 225303 P Facchi et al

[16] Wong A and Christensen N 2001 Phys. Rev. A 63 044301
[17] Bruss D 2002 J. Math. Phys. 43 4237
[18] Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273
[19] Jakob M and Bergou J 2007 Phys. Rev. A 76 052107
[20] Facchi P, Florio G, Marzolino U, Parisi G and Pascazio S 2009 J. Phys. A: Math. Theor. 42 055304
[21] Facchi P, Florio G and Pascazio S 2006 Phys. Rev. A 74 042331

Facchi P, Florio G and Pascazio S 2007 Int. J. Quantum Inf. 5 97
[22] Mezard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and Beyond (Singapore: World Scientific)
[23] Man’ko V I, Marmo G, Sudarshan E C G and Zaccaria F 2002 J. Phys. A: Math. Gen. 35 7137
[24] Facchi P, Florio G, Marzolino U, Parisi G and Pascazio S 2010 New J. Phys. 12 025015
[25] Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239
[26] Bennett C H, DiVincenzo D P, Mor T, Shor P W, Smolin J A and Terhal B M 1999 Phys. Rev. Lett. 82 5385
[27] Scott A J 2004 Phys. Rev. A 69 052330
[28] Parthasarathy K R 2004 Proc. Indian Acad. Sci. 114 365
[29] Facchi P, Florio G, Parisi G and Pascazio S 2008 Phys. Rev. A 77 060304 (R)
[30] Greenberger D M, Horne M and Zeilinger A 1990 Am. J. Phys. 58 1131
[31] Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
[32] Brown I D K, Stepney S, Sudbery A and Braunstein 2005 J. Phys. A: Math. Gen. 38 1119
[33] Brierley S and Higuchi A 2007 J. Phys. A: Math. Theor. 40 8455
[34] Facchi P, Florio G, Lupo C, Mancini S and Pascazio S 2009 Phys. Rev. A 80 062311
[35] Lubkin E 1978 J. Math. Phys. 19 1028
[36] Lloyd S and Pagels H 1988 Ann. Phys., NY 188 186
[37] Page D N 1993 Phys. Rev. Lett. 71 1291
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